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NEW ESTIMATES FOR MULTILEVEL 
ALGORITHMS INCLUDING THE V-CYCLE 

JAMES H. BRAMBLE AND JOSEPH E. PASCIAK 

ABSTRACT. The purpose of this paper is to provide new estimates for certain 
multilevel algorithms. In particular, we are concerned with the simple additive 
multilevel algorithm discussed recently together with J. Xu and the standard 
V-cycle algorithm with one smoothing step per grid. We shall prove that these 
algorithms have a uniform reduction per iteration independent of the mesh sizes 
and number of levels, even on nonconvex domains which do not provide full 
elliptic regularity. For example, the theory applies to the standard multigrid V- 
cycle on the L-shaped domain, or a domain with a crack, and yields a uniform 
convergence rate. We also prove uniform convergence rates for the multigrid 
V-cycle for problems with nonuniformly refined meshes. Finally, we give a 
new multigrid approach for problems on domains with curved boundaries and 
prove a uniform rate of convergence for the corresponding multigrid V-cycle 
algorithms. 

1. INTRODUCTION 

In recent years, multigrid methods have been used extensively to efficiently 
solve the discrete equations which arise in the numerical approximation of par- 
tial differential equations (see the references in [13, 18, 21]). In conjunction, 
there has been intensive research into the theoretical understanding of the con- 
vergence properties of these methods (cf. [2, 3, 6, 7, 9-12, 18, 20, 21]). In this 
paper, we present a new general theory based on two assumptions which are 
different from those made in earlier works. By using the new theory, we are 
able to derive some surprising uniform convergence bounds for a number of 
problems. The earlier theories suggested that the rates of convergence for these 
applications deteriorated as the number of multigrid levels increased. 

Previously, there were two general approaches for proving convergence of 
multigrid algorithms. The first was based on the so-called regularity and ap- 
proximation assumption [7]. The verification of this hypothesis used both the 
approximation properties of the discrete method as well as the regularity prop- 
erties of the approximated partial differential equation. The theory of [7, 16] 
only provides a uniform convergence rate for the V-cycle algorithm in the case 
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of full elliptic regularity. It gives a deteriorating estimate, for example, in the 
case of an L-shaped domain or a domain with a crack boundary. 

The second general approach is based solely on approximation and is given 
in [9, 12]. The "no regularity" theory gives rise to estimates which deteriorate 
at least linearly with the number of levels in the multigrid scheme. 

In contrast, the theory developed in this paper uses two assumptions. The first 
assumption replaces the regularity and approximation assumption by a much 
weaker inequality on the whole space (see (3.1)). As we will demonstrate, this 
inequality often can be verified in applications where full elliptic regularity fails 
to hold. In [22], this assumption was shown to hold for the standard application 
using Besov space arguments. In this paper, we show that the estimate can be 
verified in this case using regularity properties of elliptic problems which depend 
only on the domain. 

The second assumption is that the underlying discrete operator should be 
appropriately small when restricted to coarser grid spaces (see (3.5)). This as- 
sumption was motivated by an inequality proved by Zhang [23] for the standard 
application. Zhang's proof used local arguments. In this paper, we provide a 
more general approach, which has been successfully applied even in cases with 
nonlocal operators (cf. [4, 10]). 

We provide a general theory which shows how the rate of convergence of 
multigrid algorithms can be bounded in terms of the constants appearing in 
these two new assumptions. We will give three applications showing that the 
general theory can be used to prove stronger convergence estimates for V-cycle 
algorithms. The first applies the general theory to second-order uniformly ellip- 
tic problems in d-dimensional Euclidean space. We will show that the V-cycle 
algorithm, with only one smoothing per grid per iteration, leads to a uniformly 
convergent algorithm independent of the number of levels. This is true on the 
L-shaped domain and domains with a crack boundary. In addition, these re- 
sults are valid for both the additive (multilevel) and multiplicative (standard 
multigrid) form of the algorithm. 

The second application involves an example with a general mesh refinement. 
The best earlier results known for this problem were given in [9] and [ 12], where 
it was shown that the convergence rate for the additive and multiplicative algo- 
rithms could deteriorate at worst at a rate of 1 -C/J2 and 1 - c/J, respectively. 
Here, J is the number of levels and c is a positive constant independent of 
the number of levels. Applying the general theory developed in this paper, we 
prove, for instance, that the convergence rate for the V-cycle for this example 
is bounded uniformly below one, independently of J. 

The final example applies to domains with curved boundaries. We construct 
a simple set of nested multilevel spaces and show that our general theory may 
be used to prove uniform estimates for the additive multilevel schemes and 
that the V-cycle multigrid scheme (with one smoothing step per grid) has an 
associated contraction number bounded uniformly below one. 

The outline of the remainder of the paper is as follows. Following [7], we 
provide a general framework for the development of multilevel algorithms in ?2. 
Section 3 provides a general theory for the analysis of these algorithms based on 
the new assumptions mentioned above. Section 4 verifies the new assumptions 
in the case of the quasi-uniform finite element approximation. The theorems 
of ?3 then give new convergence estimates for this application. The case of 



NEW ESTIMATES FOR MULTILEVEL ALGORITHMS INCLUDING THE V-CYCLE 449 

mesh refinement is considered in ?5. Application of the new theory also leads 
to uniform convergence estimates. Finally, we consider a multigrid algorithm 
for domains with curved boundaries in ?6. Again, uniform rates of convergence 
are proven. 

2. GENERAL ADDITIVE AND MULTIPLICATIVE MULTIGRID ALGORITHMS 

Following [7], we first give a general framework for the development of multi- 
grid algorithms in this section. We next define the additive and multiplicative 
versions of the multigrid algorithms. The additive version provides a precon- 
ditioner for the resulting operator. The multiplicative algorithm also gives rise 
to a preconditioner which can be used in a simple linear iteration (the standard 
multigrid approach) or as a convergence accelerator in a conjugate gradient it- 
eration. For convenience, the algorithms are presented in an abstract Hilbert 
space setting. The results most naturally apply to finite element multigrid al- 
gorithms but can also be applied to certain formulations of finite difference 
multigrid algorithms. 

Let us assume that we are given a nested sequence of finite-dimensional vector 
spaces 

M1 CM2 C **. CMJ. 

Associated with this sequence, we assume that we are given additional sub- 
spaces, Mi C Mi for i = 2, 3, ... , J. The multilevel algorithms will involve 
smoothing only on the subspaces {Mi}. In addition, let A(., *) and (., *) be 
symmetric positive definite bilinear forms on MJ. Let 11-11 denote the norm 
corresponding to (., *) . We shall study multigrid algorithms for the solution of 
the problem: Given f E MJ, find v E MJ satisfying 

(2.1) A(v,q$)=(f,q$) forall qE MJ. 

The multigrid algorithms are described in terms of auxiliary operators. For 
k = 1, ... ,J, define the operator Ak: Mk -* Mk by 

(2.2) (AkW, ) = A(w, q) for all q E Mk. 

The operator Ak is clearly symmetric (in both the A(., *) and (, *) inner 
products) and positive definite. Also define the orthogonal projectors Pk, Qk: 
MJ I-* Mk by 

A(Pkw, ) =A(w, q) for all q E Mk, 
and 

(QkW, ) =(W, q) for all e Mk. 

With Mk replaced by Mk, the operators Ak, Pk, and Qk are defined 
analogously. It is easy to check the fundamental identity QiAk = A1P1 whenever 
I < k. This and the analogous identity QkAk = AkPk will be used in various 
places throughout this paper. 

Equation (2.1) can then be rewritten 

(2.3) AJuj= f. 

Both the additive and multiplicative (standard) versions of the multigrid algo- 
rithms can be thought of as defining an operator Bj: MJ I-* Mj which approx- 
imately inverts AJ. The goal of the analysis is to provide estimates for either 
the spectrum of BjAj or an appropriate norm of I - BjAj . 
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To introduce smoothing into the multigrid algorithms, we shall use "generic" 
smoothing operators Rk: Mk ` 31k, for k = 2, ... , J. Examples of these 
operators are given in [6]. The properties which they satisfy will be discussed in 
the subsequent analysis. We set RI = A-' , i.e., we solve on the coarsest space. 
The additive multigrid preconditioner is then defined by 

J 

(2.4) BJ = ZRkQk 
k=1 

To analyze the above preconditioner, we must provide estimates for the spec- 
trum of the operator 

J 
(2.5) BjAj = ETk, 

k=1 

where Tk = RkQkAJ = RkAkPk. Note that T1 = Pl. 
We shall always take Rk to be symmetric with respect to the (, *) inner 

product when used in the additive algorithm. This implies that Rk = RkQk 

and hence Tk = RkAkPk. This also results in a symmetric operator BJ. In 
general, preconditioned iterative techniques for symmetric problems are much 
more effective when applied with symmetric preconditioners. The use of a 
nonsymmetric preconditioner is inappropriate in this case. 

The standard multigrid algorithm is often defined as a process which produces 
a function MGk(wk, gk). Here, k is the grid level and Wk, gk E Mk. The 
function Wk can be thought of as a given approximation to the solution Uk of 

(2.6) AkUk = gk- 

The result of the multigrid process is to produce MGk(wk, gk) E Mk, an im- 
proved approximation to the solution Uk = Akj g . A standard presentation of 
this algorithm is given below. 

Algorithm 2.1. For k = 1, define MG, (wl, gl) =A ggl. For k > 1, MGk(wk, gk) 
is defined in terms of MGkl (,*) as follows: 

(1) Set 

(2.7) Xk = Wk + Rt(gk - AkWk) 

(2) Set Yk = xk + q where 

(2.8) q = MGk-1 (O, Qk-I (gk - AkXk))- 

(3) Set MGk(Wk, gk) = Yk + Rk(gk-Akyk) - 

The first and third steps above correspond to smoothing. The second step is 
a correction step. The operator Rt is the (, *) adjoint of the operator Rk. 
Many generalizations of the above algorithm exist involving more smoothing 
and correction iterations [7, 11, 18, 21]. We only consider the above algorithm 
since the results of this paper are most interesting in this case. We note that 
the results immediately extend to more general algorithms (see the remark after 
the second theorem of ?3) with more than one correction step (e.g., the W-cycle 
algorithm) as well as algorithms with more than one smoothing step per level. 
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The above algorithm results in a very simple error reduction process. For any 
k, let Uk solve (2.6), Vk = MGk(wk, g ) e0 = Uk -Wk, and e = Uk -Vk. 

Note that the error ekI is the resulting error after one application of the multigrid 
process on the kth subspace with an initial error eZ?. We shall demonstrate 
that these errors are related by a linear operator Fk, i.e., ek = Fkek.- This is 
obviously true for k = 1, where F1 = 0. Assume that e_1 Fk-e_ holds 
for all Wkl-I, gk-I E Mk-I . From (2.7) we have that Uk - Xk = Kk*Zek, where 
Kk* = I - R Ak . The function q produced in Step 2 approximates the function 

= Ak-1lQk-1(gk -Akxk) 

A lQk-lAk(Uk - Xk) = Pk-(Uk - Xk). 

By assumption, 
4 - q = Fk-14, 

or 
Uk - Xk - q = Uk - Xk -(I - Fkl)Pk1(Uk - Xk)- 

Thus, 
Uk - Yk = [(I- Pk-1) + Fk-lPk-l](Uk - Xk)- 

Finally, ek - Kk(uk - Yk), where Kk = (I - RkAk) . Hence, 

el = Kk[(I - Pk-1) + Fk-lPk-I]KZeo 

Thus, we see that the errors on the kth level are related by the linear operator 
Fk defined by the recurrence 

(2.9) Ek=Kk[(I-Pk-1) + Fk-1 Pk-I ]K*. 

The multigrid process is often applied repeatedly to develop an iterative 
method for solving problem (2.3). Given an initial approximation u?, sub- 
sequent approximations are defined by 

(2.10) ul+l = MGj(ul, g) for I=1. 

From the above discussion, the error el = u - ul is given by el = (Fj)le0. 
Consequently, the multigrid iterative process corresponds to a linear iterative 
procedure. This can be written equivalently as 

(2.1 1 ) ul+l = u1 + BJ(g-Aju1) 

for the operator BJ = (I - Fj)AJ1 . Alternatively, this operator BJ can be 
directly defined by the following algorithm. 

Algorithm 2.2. Define BF = A-1. For k > 1, Bkmg for g E Mk is defined as 
follows: 

(1) Set 

(2.12) x = R (g). 

(2) Set y = x + q, where q is given by 

(2.13) q = Bm 1Qk- (g- Akx). 

(3) Set Bm g=y+Rk(g-Aky). 
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It is straightforward to show that Bm satisfies (cf. [7]) 

I - BmAk = Kk[(I - Pk-,) + (I - Bk-lAk- l )Pk-l ]Kk 

with Bm , Bkml defined by Algorithm 2.2. This shows that Fk = I - BmAk, for 
k = 1, ... , J, i.e., the linear iteration (2.1 1) with Bm defined by Algorithm 
2.2 is equivalent to the multigrid iteration (2.10). This is an important observa- 
tion in that it allows the use of the multigrid process to define preconditioning 
operators Bm. For example, the operator Bm can be used as a preconditioner 
with the conjugate gradient method to develop more effective iteration proce- 
dures in many applications. It also allows us to use the operator presentation 
of Algorithm 2.2 for the analysis of the multigrid iteration. 

It was shown in [9] that the error reduction operator associated with Algo- 
rithm 2.2 (the standard multigrid algorithm) can be written 

(2.14) (I-BJ Aj) = (I-Tj)(I-Tj-1)..(I-T2)(I-T) 
* (- T1*)(I-T2 ) (- TJ-1)(I -TJ) 

This identity depends upon the assumption that the subspaces are imbedded 
and that one form is used to define the operators on all levels (see (2.2)). 

Note that Tk* is the adjoint of Tk with respect to the A(., *) inner product. 
Comparing (2.5) and (2.14) clearly shows the relation between additive and 
multiplicative multilevel algorithms. 

Remark 2.1. The multigrid algorithms are often defined in terms of inner prod- 
ucts (., .)k which may vary as a function of k. In this case, (., .)k re- 
places the (, *) inner product in (2.1) and the operator Qk- 1 is replaced by 
QkVl Mk - Mk-l defined by 

(Qk-1v YV)k-1 = (V X V/)k for all V E Mk_1. 

The reason for introducing (possibly discrete) inner products on each level is 
that it may appear that the projection Qk requires the inversion of Gram ma- 
trices. In fact, for appropriately defined smoothers [6], this inversion is avoided 
and Qk never explicitly appears in the computational algorithm [9]. 

3. A GENERAL FRAMEWORK FOR THE ANALYSIS OF MULTIGRID ALGORITHMS 

We provide a general theory for multigrid algorithms in this section which 
is based on a number of abstract assumptions. Two of these assumptions are 
different from those used in earlier analyses of multigrid algorithms. In later 
sections, we will apply this theory to prove stronger results concerning the con- 
vergence rate of multigrid algorithms in certain applications. 

We first describe the new assumptions. The first is much weaker than the full 
regularity and approximation assumption (cf. [7]). Let Ak denote the largest 
eigenvalue of Ak . The new assumption is that there exists a constant Co > 1 
satisfying 

(3.1) A(v, v) < Co [A(Plv, v) + Ej IAkPkV 112 for all v E MJ. 
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Remark 3.1. The full regularity and approximation assumption is that there is 
a constant CK not depending on k such that 

(3.2) A((I-Pk-l)u, u) <CK kuI for all u E Mk 

Let v be in MJ. Taking u = Pkv in (3.2) and summing over k gives 

A(v, v) < A(Piv, v) + CK E Ak for all v E Mi. 

Thus, (3.2) implies (3.1) in the case when Mk = Mk . In general, the converse 
is not true. 

The following lemma, which will be crucial in applying the general theory, 
illustrates that the above assumption is much weaker than the standard full 
regularity and approximation assumption. 

Lemma 3.1. Let A and v be equivalent quadratic forms on Mj. By this we 
mean that there are positive constants co and c1 (not depending on J) satisfying 

(3-3) coA(v, v) <?V(v, v) < ciA(v, v) for all v E Mj. 

Let ik , 9Ak, _@k, and Ak be the quantities defined with respect to v corre- 
sponding to Ak, Pk, Pk, and Ak. Assume that (3.1) holds. Then 

(3.4) V(v, v) < CocI/CO [sc?(9 Avv, V) + I Akk 11 for all v E Mj. 

Proof. Let v be in Mj . We note that (3.1) can be rewritten as 

A(v, v) < Co [(Al QIAJV, AjV) + k: HQkAjv 

Setting w = AJv gives the equivalent inequality 

(AJw, w) < Co [(AT1Qlw, w) + k ]QW 

It then follows from (3.3) that 

CO(J-1w, w)<COCI [(GV'Q1W,W)+Z E Ak 112 for all w E MJ. 

This is just a restatement of (3.4) and hence the proof is complete. OI 

Remark 3.2. We allow for the constant CO appearing in (3.1) to depend on 
J. The results of the general theorems will always depend in a simple way on 
this constant. We will provide applications where (3.1) can be proved with CO 
independent of J, even though it is known that, for these applications, the 
corresponding CK in (3.2) must tend to infinity. It is also shown in [12] that 
(3.1) holds with Co = CJ for many applications. OI 
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For k = 2, ... , J, set Tk = lk AkPk and T = P1 . The second assumption 
is that the operator Tk is "small" when applied to functions in Ml with I < k. 
More precisely, we assume that there is a positive number e < 1 and a positive 
constant C satisfying 

(3.5) A(Tkw, w) < (Cek-l)2A(w, w) for all w E Ml. 
Additional assumptions required for the theory are standard and will be stated 
when needed. However, we note that (3. 1) can be rewritten as 

J 

(3.6) A(v, v) < Co ZA(Tkv, v) for all v E MJ. 
k=1 

The first theorem of this section provides an estimate for the condition num- 
ber associated with the additive multilevel method. For this result, we use the 
following hypothesis on the smoothing operator: For k = 2, . .. , J, we assume 
that Rk is a symmetric operator with respect to (., *) and satisfies 

(3.7) Cl < (Rkw, w) < C2 1, 1W for all w E Mk 
Ak Ak 

Without loss of generality, we assume that Cl < 1 < C2. Note that for k > 1, 

A(Tkv,V)= v H Ak 

and hence (3.7) implies 

(3.8) ClA(Tkv, v) < A(Tkv, v) < C2A(Tkv, v) for all v E MJ. 
Theorem 3.1. Assume that Rk satisfies (3.7) and that (3.1) and (3.5) hold. Then 
the condition number K(BjAj) satisfies 

K(BaAj)< ( C )2C2Co 

Proof. It suffices to estimate the constants cl and c2 satisfying the inequalities 

(3.9) cjA(V1, V/) < A(BjAj V, V/) < c2A(VI, V/) for all V E MJ. 
We first bound the sum on the right-hand side of (3.6). Clearly, for V E MJ, 

J J k 
Z A(TkVi, V) = Z Z A(TkVi, (Pl-PPl-l)Vi), 
k=i k=i 1=1 

with PO = 0. Applying the Schwarz inequality with respect to A(Tk., -) and 
(3.5) gives that 

J J k 

(3.10) Z A(Tk V, V) < ? E EZ k-lA(Tk V, V/) 12A((Pl-Pl 1)V, Vi)1/2. 
k=i k=i 1=1 

Let = + = 1+e+ 2 = (1 _ 6)-1 . Then for {ak }, {Ifk} arbitrary real vectors, 
the following inequality is elementary: 

J k J k g J k 

k-1 q 1: 1: gk-lC 77,2 =1k11fl 
E E e ak Pi < g klk + _ E E sk-12 

(3. 11 ) k=1 1=1 k=1 1=1 k= 1=1 

< Ek + k= X 
k=1 k=i 
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for Ij > 0. Combining (3.10) and (3.11) gives 
J J 2 

E A(Tk/ < I)Cj E A(Ty)k + CF A . 
k=I k=I 41 

Taking Ij = (2C)-1 above and (3.6) show that 
J 

(3.12) C0 lA(, <) ? ZA(Tk, <) ? C2 2A(V, V). 
k=I 

Combining (3.12) with (3.8) shows that (3.9) holds with cl = Cl/Co and c2 = 

C2C2g'2. This completes the proof of the theorem. o 

The following corollary is an obvious consequence of the theorem. It shows 
that we may reduce the analysis of the additive algorithm to that for any equiv- 
alent quadratic form. 

Corollary 3.1. Assume that Rk satisfies (3.7) and that (3.1) and (3.5) hold. Let 
v be an equivalent quadratic form on MJ (satisfying (3.3)) and ja be the 
additive preconditioner corresponding to X, i.e., 

ga -j Q i+RkQk. 

k=2 

Then the condition number K(Rjaj) is bounded independently of J. 
Remark 3.3. The upper inequality of (3.7) does not hold for many smoothing 
operators but it does hold for the additive point smoother (cf. [12, inequality 
(4.3)]). The additive point smoother is defined on spaces Ak (of dimension 
Nk ) with a nodal finite element basis {q } by 

Nk 

(3.13) Rkv = A(q, qk)4>(v, q$)q4 
i=l 

Note that the upper inequality in (3.7) fails to hold with general Rk if Rk is 
too much like Ak- l . In fact, the largest eigenvalue of BJ is J when Rk = A - 1 

for k = 1, ... , J. This shows that the convergence of the additive multilevel 
algorithm may deteriorate if the smoothers do not behave like point methods. 
For example, the upper inequality in (3.7) holds for point and line relaxation 
schemes but fails to hold for some block schemes. In contrast, the analysis 
for the multiplicative version (standard multigrid) will not require the upper 
inequality of (3.7) and no convergence deterioration can be seen in the resulting 
algorithms. 51 

We next provide an analysis of the multiplicative form of the multigrid al- 
gorithm (Algorithm 2.1). For the multigrid algorithms, we shall also allow the 
use of nonsymmetric smoothers. In this case, the lower inequality of (3.7) is 
replaced by the following conditions on the smoother. 

(C. 1) There is a constant CR > 1 which does not depend on k such that the 
smoothing procedure satisfies 

(3.14) Alul <CR(Rku, u) forallu E Mk. 
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Here, Rk = (I - KkKk)A- I (recalling that Kk = I - RkAk ). Note that (3.14) 
holds with CR = 1 for k = 1 since RI = Al1. In addition, smoothers in 
multigrid algorithms must be properly scaled as stated in the following condi- 
tion. 

(C.2) There is a constant 6 < 2 not depending on k such that 

(3.15) A(Tkv, Tkv) < OA(Tkv, v) for allv eMMk. 

Finally, Mk should be an invariant subspace under RI . Explicitly, we require 
that 

(C.3) Rk = RkQk. 
The above conditions are shown to hold in [6] for the smoothing operators 
corresponding to many variations (including line- and point-based schemes) of 
Jacobi and Gauss-Seidel iterative procedures. It is easy to see that the lower 
inequality of (3.7) implies (3.14) (with a slightly different constant) in the case 
of symmetric Rk,. In addition, (C.3) is automatically satisfied for symmetric 
smoothers since, by definition, the range of Rk is contained in Mk . 

The following theorem provides the general convergence result for the multi- 
grid algorithm. 

Theorem 3.2. Let Rk satisfy (C.1)-(C.3) and assume that (3.1) and (3.5) hold. 
Then 

(3.16) 0 < A((I - B7Aj)v , v) < (1 - l/CM)A(v , v) for all v E Mj 

holds for 

(3.17) CM = 2CO(CR + (I )2-2%) 

Proof. Set Eo = I, and for k = 1,... J, define 

Ek = (I- TkV ITk-1) ..IJ- TO) 

Note that by (2.14), 

A((I - BAj)v , v) = A(E*v, EJv), 

and the lower inequality of (3.16) follows. The proof of the upper inequality 
requires bounding the norm of E or, equivalently, the norm of its adjoint EJ . 

We first derive some identities involving the above operators. Clearly, for 
k = 1I, ... , J, 

(3.18) Ek-1 - Ek = TkEk-I 

from which it follows that 
k 

(3.19) IE,- = E TmEm-. 
m=1 

It is obvious from (3.18) that 

(3.20) A(Ek_jv, Ek,lv) - A(Ekvv, Ekv) = A((2I - Tk)Ek_Iv, TkEk,,v). 

Let Tk = RkAkPk = (I - KZKk)Pk . Clearly, 

(3.21) A(TkEk,1v, Ek,1v) = A((2I - Tk)Ek,lv, TkEk,,v). 
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Summing (3.20) gives that 

(3.22) A(v, v) - A(Ejv, Ejv) = ZA(TkEkl1v, Ek-,v). 
k=i 

Note that the upper inequality of (3.16) immediately follows if we prove that 

(3.23) A(v, v) < CM[A(v, v) - A(Ejv, Ejv)]. 

Thus, the proof reduces to showing that A(v, v) can be bounded by CM times 
the sum on the right-hand side of (3.22). 

By (3.6), 

A(v, v) < CoEA(Tkv, v) 
k=i 

(3.24) < 2CO (ZA(TkEk1lv, Ek_lv) 
k=I 

J\ 
+ ZA(Tk(I-Ekl)v, (I-Ek-l)v)) 

k=2 

For k = 2, ..., J, condition (C.1) implies 

IIAkPkEk- IV 11' 
A(TkEk-lv, Ek-lv) = ? CR(RA -IE ~V ,-IPEkV)- IAkPkklI C(kAkPkEk_, AkPkEk-) 

By (C.3), the image of Rk is in 31k and RkQk = Rk . Consequently, 

(RkAkPkEk-1V, AkPkEk-1v) = A(TkEk-lV , Ek-1v) 

Moreover, since T1 =T 

(3.25) EA(TkEk_Iv, Ek-lv) < CRZA(TkEkIV , Ek_qV). 
k=I k=I 

For the second sum on the right-hand side of (3.24), we use (3.19) and (3.5) 
to get 

J ~~~~~~~J k-1lk-I 

ZA(Tk(v - Eklv), v - Eklv) = E E E A(TkTlEl_lv, TmEm-IV) 
k=2 k=2 1=1 m=I 

J k-1lk-I 

< C2 2k l-mA(T1E1_jv, TiEjIiV) 12A(TmEmijv, TmEm-lv) 2 

k=2 1=1 m=I 

1c2 J k-1I k-1I 

2-2 E g E .2k-l-m[A(TlELlV, T1Ej_Iv) + A(TmEm_Iv, TmEm-1V)]. 
k=2 1=1 m=1 

It suffices to bound either of the two terms on the right-hand side above. By 
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(C.2), 
J k-I k-I 

E EE Z 2k-1-mA(TjE_ 1v, T1E1_jv) 
k=2 1-1 m=1 

J k-I 

< O, Z E Egk-lA(TlEl_jv, El1lv) 
k=2 1=1 
J-1 J 

-OC E E gk-lA(TjE _jv, El-lv) 
1=1 k=l+l 

J-1 

< 0 2g72 A A(TIEj_I-V, El- I v). 
1=1 

Using (C.2) and (3.21) gives that 

A(T1E1_jv, El-lv) < (2 - )-1A(T1E1_jv, El-lv). 

Thus, 

ZA(Tk(v -Eklv), V -Ek-lV) 

(3.26) k=2 

( 2e 2 6 -H A(TkEk Iv, Ek1v). 
(- 
(1 

)2 
6 - ...s 

- ~ 2- k=i 

Combining (3.24), (3.25), and (3.26) shows that (3.23) holds with CM given 
by (3.17). This completes the proof of the theorem. El 

Remark 3.4. The above theorem holds for many generalizations of the multigrid 
algorithm given in Algorithm 2.1. For example, it holds for W-cycle and other 
algorithms which use more than one iteration for the coarse-grid correction 
(Step 2). The proof follows from an argument given in ?2 of [9]. The result 
also holds for algorithms which use more smoothings per grid level as long as 
one alternates between Rk and RI (see, [6, 11]). The modification to the 
proof is minor and illustrated in the proof of Theorem 4.3 of [6]. Finally, an 
analogous contraction result holds for nonsymmetric cycling algorithms where 
smoothing is only done either before or after the correction step, i.e., Step 1 or 
Step 3 is skipped. 

4. THE QUASI-UNIFORM FINITE ELEMENT APPROXIMATION 

In this section, we verify the hypotheses for the general multigrid theory in 
the case of a model second-order elliptic problem. We first describe the model 
problem and its finite element approximation. In particular, a nested sequence 
of quasi-uniform approximation spaces are defined in a standard fashion. Next, 
some notation concerning Sobolev spaces and the corresponding norms is pro- 
vided. Finally, the conditions (3.1) and (3.5) are shown to hold with constants 
that are independent of the mesh parameters. Application of the general the- 
ory of the previous section then implies that the multilevel algorithms converge 
with rates that are independent of the number of levels, even in many examples 
which do not satisfy full elliptic regularity. 
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Let Q be a bounded domain in Rd with polygonal boundary OQ. We will 
include the case when Q c R2 is a domain with a crack. We consider the 
Dirichlet problem 

(4.1) Lu=f inQ, 
u = O on OQ, 

where 
d i ( Ov \ 

Lv=-Z0 aij~)+ av. 
i, j=1Ix 

x 

Let Q = U 2, for a fixed number of subdomains {Q,}, where each Q, has a 
Lipschitz continuous boundary. For each i, j, 1 assume that aij is in Wpy (Q,) 
for some y E (0, 1/2) and p > d/y. Here, Wpy(Q) is the Sobolev space of 
order y defined in terms of the norm LP (Q) (cf. [17]). This condition implies 
that the coefficients are continuous on Q, but may jump across the boundaries. 
In the case of the additive multilevel algorithm, this assumption can be replaced 
by the assumption that the functions aij are in L? (Q). We further assume 
that the matrix {aij (x) } is uniformly positive definite almost everywhere. In 
addition, we assume, for simplicity, that a(x) E L? (Q) is nonnegative. 

Remark 4.1. We impose Dirichlet boundary conditions in the above problem 
for simplicity. The techniques provided in this section can also be applied to 
problems with mixed boundary conditions. An example of such an application 
is given at the end of this section. El 

The form A (., *) is defined for this example by the generalized Dirichlet 
form corresponding to (4.1), i.e., 

(4.2) A(v, w) = ,j JaijW ax dx+ javw dx. 

This is defined for all v and w in the Sobolev space HI (Q) (the space of 
distributions with square-integrable first derivatives). 

Note that by the assumptions on the coefficients in (4.1), the quadratic form 
A (., .) is uniformly equivalent to the form corresponding to the constant- 
coefficient operator -A. Thus, for the purpose of proving (3.1), it suffices to 
consider the case of the Laplacian. We will assume that there is an a in (O, 1 ] 
such that solutions u of (4.1) with L = -A satisfy the following regularity 
estimate: 

(4.3) IIUIII+a < C llf 11-1+a 

Here, +a is the interpolated norm between L2(Q) and H- (Q) (the dual 
of Ho' (Q)). Thus, we assume that the domain results in some elliptic regularity 
for smooth coefficient problems (but not necessarily full elliptic regularity). This 
assumption is weak, since (4.3) may not hold for any a > 0 for equations with 
bad coefficients. Such an inequality holds for plane domains with polygonal 
boundaries, including domains with cracks (cf. [1 5]). 

We shall consider the case of quasi-uniform finite element approximation of 
the solution of (4.1). To define the approximation spaces, we will first define the 
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underlying mesh partitioning. We assume that a unit-size coarse finite element 
partitioning of the original domain Q is given ( Q = U Ti ). For example, we 
take this partitioning in terms of triangles in the case of two spatial dimensions. 
For examples of such constructions see [14]. 

Associated with the mesh partitioning, we are given a rule for refinement. For 
example, in two dimensions, a triangle can be refined into four by connecting 
the midpoints of the edges. 

The mesh triangulations can now be defined by mathematical induction. The 
coarse triangulation defined above provides the first grid {Tl }. Given that a 
grid {f TM} has been defined, the grid {rTk} is defined by refining {TM I} using 
the refinement rule. We assume that the mesh size of the kth triangulation is 
on the order of 3k for fixed 3 < 1 . 

The finite element space Mk is defined to be a space of piecewise polynomial 
functions with respect to the mesh { T } which are continuous on Q and vanish 
on OQ (cf. [1, 14]). Note that a nodal finite element basis is not required 
for the application of this section. In the present example, Mk = Mk, i.e., we 
smooth on all functions of Mk. The simplest two-dimensional case is when Mk 
consists of functions which are piecewise linear with respect to the triangulation 
and the refinements are defined by breaking triangles into four by connecting 
the midpoints of the edges. 

We next define the Galerkin approximation to the solution of (4.1). Multi- 
plying (4.1) by a smooth function q which vanishes on OQ, and integrating 
by parts, gives that u satisfies 

A(u, q) = (f, q). 

Here, (, *) denotes the L2(Q) inner product. The Galerkin approximation to 
u is the unique function Uj E MJ satisfying 

(4.4) A(uJ, V/) = (f, V/) for all V/ E MJ. 

We shall analyze the multilevel iterative methods of ?2 for solving (4.4). 
To verify the hypotheses of ?3, we require some notation for norms in Sobolev 

spaces. Let s be a nonnegative real number and 11. II,ii denote the Sobolev 

norm of order s on a domain Q (cf. [17, 19]). The Q will be left out of this 
notation when Q = Q, and the s will be left out in the case of L2(Q) (s = 0). 

Remark 4.2. The above assumptions on the mesh sizes imply that )k (where 
Ak is defined by (2.2)) is on the order of 3-2k . 

Remark 4.3. For this example, it was shown in [12] that (3.1) holds with CO = 
CJ. The next lemma improves this bound and shows that (3.1) holds with 
CO = C (independent of J). This inequality was proved earlier in [22] using 
Besov space techniques. We base our proof on the well-known fact that a wide 
class of domains give rise to elliptic regularity. 

Lemma 4.1. Assume that (4.3) holds for L = -A and some a E (0, 1] . Then, 
for general L, there exists a positive constant CO not depending on the number 
of mesh levels J such that (3.1) holds. 
Proof. Here and in the remainder of this paper, we shall use c with or without 
subscript to denote a generic positive constant. Such constants will always be 
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independent of the number of levels in the multilevel algorithm. As already 
observed, by Lemma 3.1, it suffices to prove (3.1) with L = -A. Clearly, for 
w E MJ, 

J 

A(w, w) = A(w, Qlw) + E (AkPkW, (Qk - Qk-I)W) 
k=2 

< (A(P1W, W) + E A/kpk 
) 

(A(Qlw, QIW) + ZkII(Qk - Qk -)II2'l 1/2 
k=2 

Consequently, it suffices to show that 
J 

(4.5) A(Qlw, QIw) + E kI||I(Qk - Qk- 1)W 12 < cA(w, w). 
k=2 

The following approximation and boundedness properties for the operators 
{Qk} are well known: For v E Ho(Q) 

(4.6) II(Qk -Qk-I)V 11 < cAk lA(v, V) for k = 2, ...,5 J, 

A(QkV,QkV)<cA(v,v) fork=1, ..., J. 
In addition, it is well known that (4.3) and the approximation properties of the 
finite element spaces imply that 

(4.7) 11(1-Pk_q)VlII_2 < cL, A((I-IPkl)v, v). 

Here we have used the fact that Ak < ch -2 for this application. From (4.6), it 
suffices to bound the terms appearing in the sum on the left-hand side of (4.5). 
Let ,6 satisfy O < < a. Then 

Z)LkII(Qk - QkI)W112 = Z k EZ(Qk-Qk-I)(P1-Pl I)W 

(4.8) k=2 k=2 l=k 
J J / J 

? Ak ZA 1Z4( IVQk - Qk-l)(Pl Pl_)w1)2 
k=2 I=k l=k 

By Remark 4.2, the first sum over I above is bounded by cA-fl. Thus, the 
boundedness of Qk on L2(Q), the first inequality of (4.6), and interpolation 
gives 

J J J 

ZAkIl(Qk - Qk-l)wII k 4 I-a '-Pii)wHl _ 
k=2 k=2 l=k 

Applying (4.7) and changing the order of summation gives 
J J J 

Z)kII(Qk - Qk-)W1 < C? 4 Z fl A((Pl - Pl1)w, W) 
k=2 k=2 l=k 

J 1 

= CZ4 A#-aA((PI - Pl- 1I)w, W) Z AaY 
1=2 k=2 
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Since a is greater than fi, Remark 4.2 implies that the sum over k above is 
bounded by a constant times Al T . Thus, 

Akll(Qk-Qk-I)W11 < cEA((Pl-PPlI)w, w) < cA(w, w). 
k=2 1=2 

This completes the proof of the lemma. El 

Remark 4.4. We note that replacing (Qk - Qk-1) by (I - Qk-1) in (4.8) and 
following the proof of the lemma gives that 

J 

ZkII( - Qk-I)WH| < cA(w, w). 
k=2 

This inequality will be used in ? 5. El 

The next lemma provides a proof of (3.5) for the application described above. 

Lemma 4.2. Let I be less than or equal to k. Then there is a constant C not 
depending on the mesh parameters satisfying 

(4.9) A(Tkv, v) < C(hk/hl)27A(v, v) for all v E Ml. 
Proof. The proof of Lemma 4.2 is based on the following lemma. Its proof will 
be given after the proof of Lemma 4.2. 

Lemma 4.3. There exists a constant c such that for all q > 0, q E H1 (Q) and 
V/ E H1+7(Q), 

(4.10) IA(O, t)j < c(q-1 110112 + qy/(1-y) 11112)1/2 IIH111+7 

Assuming Lemma 4.3, we now complete the proof of Lemma 4.2. Let w E 
Ml. We clearly have that for k > 2, 

(4.11) A(Tkw, w) = W - (sup A(,q) 2 
Ak kq$EMk 11 

By Lemma 4.3, 

IA(w, q)j < C(i-1 110112 + q q/(1-$)110112)1/2 W 

< c(C-l + q7/(1-')hk 2)1/2 11 q 11 11 W 1+ 1 

Taking q = hk(' 2 ) and using the inverse property (see the Appendix of [1 ] 
for a proof) 

llw 11 1+y < ch-7 llw 11 
gives 

(4.12) IA(w, q)j < chjj+Yh7Y llwlll 11 - 

Inequality (4.9) follows combining (4.11), (4.12) and the fact that Ak > ch -2. 
This completes the proof of Lemma 4.2. El 

Proof of Lemma 4.3. This lemma was essentially given in [5] and we will follow 
its proof. However, the version stated here gives a somewhat more explicit form 
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of the bounds and requires less regularity on the coefficients than that of Lemma 
4.1 of[5]. 

Let q be in H1(Q) and V be in H1+Y(Q). There is no problem bounding 
the lowest-order term of (4.2). We need only consider the derivative terms in 
(4.2). Fix 1, and let El denote the extension operator defined on L2(Ql) given 
by Theorem 1.4.3.1 of [17]. For a function v defined on Ql, let v denote the 
extension of v by zero to Rd. Since y < 1/2, Corollary 1.4.4.5 of [17] gives 
that the norm Iv IIWY(Rd) is equivalent to the norm livy for all v E HY(Ql) . 
Thus, 

I 0XI AX ( (O(Elo) (J 0 )) 
where 7 denotes the Fourier transform. By the Schwarz inequality, 

aij 1 1 dx 

(4.13) < c (I 1 11;2 (El/)(2)12d) ail, 

< C(q-1 110112 + qy/(l-y) 11H0)1122 0V' 

Ox1. y 

where q > 0 is arbitrary. For the last inequality, we used Theorem 1.4.4.2 
of [17], which states that multiplication by aij E Wp (Ql) for p > d/y is a 
bounded operator on HY(Q1). The lemma immediately follows by summing 
over 1. El 

Remark 4.5. A more constructive proof of Lemma 4.2 is possible in the case 
of smooth coefficients and nodal finite element approximation spaces. In this 
case, one proves directly that 

A(Tkw, w) < c(hk/h1)A(w , w) 

holds for Tk = RkAkPk, with Rk defined by (3.13). The lemma then follows 
with y = 1/2 from 

IV<112 < c(Rkv, v) for all v E Mk, 
Ak 

which is a general smoothing property proved in [6]. 

Combining Lemmas 4.1 and 4.2 with Theorems 3.1, 3.2, and Corollary 3.1 
gives the following theorems. 

Theorem 4.1. Let BJ be defined by (2.4) with A(., *), (, ), and {Mk, Mk} 
as described in this section. Assume that Rk (which is symmetric) satisfies (3.7). 
Then the condition number K(BjAj) is bounded by a constant which is inde- 
pendent of J. 

Theorem 4.2. Let Bm be defined by Algorithm 2.1 with A(., ), (, *), and 
{Mk, Mk } as described in this section. Assume that Rk satisfies (C.1)-(C.3). 
Then 
(4.14) 0 < A((I - BmAJ)v, v) < (1 - 1/CM)A(v, v) for all v E MJ. 

The constant CM in (4.14) is independent of J. 
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Remark 4.6. A uniform result similar to the upper estimate in Theorem 4.1 in 
the case of Rk defined by (3.13) was announced by Zhang at the Fifth Inter- 
national Symposium on Domain Decomposition Methods [23]. In addition, a 
version of Theorem 4.1 is proved in [22] using Besov-space equivalences. 

Remark 4.7. The results of this section hold for many applications with mixed 
boundary conditions. We illustrate this by considering a simple example. Specif- 
ically, we consider (4.1) with Q = (O, 1) x (O, 2) but with the boundary con- 
ditions 

2 0 u 
= 0 on EN, 

Ov 
u = 0 on OQ/FN. 

Here, EN is the line segment {( 1, y) l y E ( 1, 2)} and I denotes the outward 
conormal derivative on EN. There is no problem with the proof of Lemma 4.2 
in this case since the basic ingredient in the proof, Lemma 4.3 does not depend 
on boundary conditions. Furthermore, the resulting form A(., *) is equivalent 
to that corresponding to the Laplacian (with boundary condition Ou/ln = 0 
on EN ). The Laplacian with this boundary condition satisfies (4.3) for any a 
in (O, 1/2). Thus, Lemma 4.1 holds. 

5. GENERAL MESH REFINEMENT 

In this section, we apply the general theory to an approximation which uti- 
lizes a locally refined mesh. Such mesh refinements are convenient for accurate 
modeling of problems with various types of singular behavior. For simplicity, 
we will consider the piecewise linear finite element approximation, although we 
will allow a very general form of refinement. 

As in the previous section, we consider problem (4.1) and start with a coarse 
triangulation. The refinement triangulation {IT'} is defined in terms of a se- 
quence of (open) mesh domains 

QJ C QJ-1 C *f K2, = Q. 

The only restrictions on the mesh domains {Ik} are that the boundary of Qk, 

for k > 1 , consists of edges of mesh triangles in the mesh {Tk1 } , and that there 
is at least one edge of {T'- } contained in ik . These mesh domains control 
the region of refinement. If Tk 1 is a triangle contained in Qk , then it is broken 
into four smaller triangles (in the triangulation {IT} ) by the lines connecting the 
midpoints of the edges. Alternatively, if T1 is in the complement of ik , then 
it is not subdivided but is directly included into the kth triangulation. A simple 
example of this construction is the case of a unit square with local refinement 
near the corner (1, 1). In this case, we take ik = Q2 for k = 1, ...,j and 
Q2k = [I- 2 kj, 1] x [I-2k i, 1] for k = j + 1, ... , J. 

We consider the piecewise linear finite element approximation, although 
many extensions are possible. The space Mk is defined to be the set of piece- 
wise linear functions with respect to the mesh {T } which are continuous on Q2 
and vanish on OQ. The continuity condition implies that the finer grid nodes 
on a coarse-fine boundary are slave nodes in the sense that the values of the 
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function there are completely determined by the values of the function on the 
nearby coarse grid points. 

For this application, if Qk-I 1 $ k, then the subspace Mk on which we 
smooth is a proper nonzero subspace of Mk . In fact, we define Mk to be the 
functions in Mk which are zero outside of ik. Thus, we smooth on a given 
level just in the region where new nodes are being added in the refinement 
scheme. 

For this application, there is no difficulty in proving (3.5). The largest eigen- 
value of Mk is on the order of hk2, where hk is the size of the smallest 
triangle defining the mesh of Mk. The argument given in the proof of Lemma 
4.2 applies with little change and gives that (3.5) holds with a uniform constant 
C. 

To apply Theorems 3.1 and 3.2, we need to prove (3.1). By Lemma 3.1, we 
need only consider the case when the coefficients defining L are smooth. Let 
Mk denote the quasi-uniform finite element space obtained from refining over 
the entire domain at each level starting with { T}, that is, the quasi-uniform 
space resulting from the above construction with Q2 = Q1 = 2= = QJ . Let 
Qk denote the (., ) orthogonal projection onto Mk . A sequence of operators 
(k : MJ 1-+ Mk was constructed in [9] (see the sequence {Qk} defined in ?5 of 
[9]) which satisfy 

(1) ('j is the identity. 
(2) The range of ('k - ('k-I is contained in Mk. 
(3) The inequalities 

II (I-d'k)VII < C || 'IQk)V | 

A(dlv, dllv) < cA(v, v) 

hold for all v E MJ and with constant c independent of k and J. 
Following the proof of Lemma 4.1, for w E MJ, we have 

J 

A(w, w) = A(w, a1w) + Z(AkPkW, (k - dk-1)W) 
k=2 

< A(Plw, w) + ? IIAkPkWII )12 

J 1/2 

(A(dlw, l'W) + IAkll(dk- k_l)WI12) 
k=2 

Consequently, it suffices to show that 

J 

(5.1) A(41 w, & w) + - Akl(-dk? )WI12 < cA(w, w). 
k=2 

Clearly, by (3), 

11 (, _ )wk_ |2WI1 2 [II( _I- ,k)W I112 + ||I(I-, - )W d, 2 
2_(IW12 

2 

? C 11(1 - Qk-I)W 112. 
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Thus, 
J 

A(d1 w, d1W) + Z AkII(k -dk- OW )II 

k=2 

J2 
< c(A(w, w) + EAk|(I -Qk_I)W||) 

k=2 

Inequality (5.1) follows from Remark 4.4. This shows that (3.1) holds for the 
refinement application of this section. 

We can combine the above observations with Theorems 3.1, 3.2 and Corollary 
3.1 to get: 

Theorem 5.1. Let BJ be defined by (2.4) with A(., *), (, ), and {Mk, Mk} 
as described in this section. Assume that Rk (which is symmetric) satisfies (3.7). 
Then the condition number K(BjAj) is bounded by a constant which is inde- 
pendent of J. 

Theorem 5.2. Let Bm be defined by Algorithm 2.1 with A(., *), (, ), and 
{Mk, Mk} as described in this section. Assume that Rk satisfies (C.1)-(C.3). 
Then 

(5.2) O < A((I - BmAj)v, v) < (1 - 1/CM)A(v, v) for all v E MJ. 

The constant CM in (5.2) is independent of J. 

6. A CURVED BOUNDARY APPLICATION 

In this section, we consider applying the theory developed earlier to a finite 
element approximation of a boundary value problem with a curved boundary. 
To remain in the framework of nested spaces, we consider coarser-grid multi- 
grid spaces Mk which vanish in a neighborhood of order hk of the domain 
boundary. Even though these spaces provide a poor approximation, we will 
show that they lead to multigrid algorithms which converge with uniform rates 
of reduction. 

For convenience, we shall consider a convex domain in R2 with smooth 
boundary. Many extensions are possible. We will consider problem (4.1) with 
the same assumptions on the coefficients as made in ?4. The form A(., *) is 
defined by (4.2). We also assume that (4.3) holds for L = -A and some a in 
(0, 1]. 

We start with a coarse approximate triangulation {IT} of Q. By construc- 
tion, a node will be either in the interior of Q or on OQ. Without loss of 
generality, we assume that no triangle of {zT} has all three vertices on OQ. 
The triangulation {T } will be defined from {T } as follows: 

(1) If Tk is a triangle with two vertices in Q then T is broken into 
four finer-grid triangles by the lines connecting the centers of the edges. 

(2) A triangle Tk_ with two vertices on OQ results in four finer-grid trian- 
gles as illustrated in Figure 6.1. The new boundary point is the midpoint 
along the boundary arc between the two boundary vertices of TI 

Note that not all triangles in {I } can be written as the union of the 
triangles in {IT} . As a consequence, we will define the coarser multilevel spaces 
k < J in a different manner than that used for the finest space. 
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{T,' } {Tk~ } 

FIGURE 6.1. The mesh refinement near the boundary 

We use the above grid strategy to define the sequence of approximation 
meshes up to J and define Ok to be the interior of U i-5k. The fine-grid 
approximation space MJ is a space of piecewise linear functions with respect 
to {IV} which are continuous on QJ and vanish on aQj. 

For k < J, let Mk denote the analogous space of piecewise linear functions 
which are defined in terms of the triangulation {zk }. Let QO, for k < J, 
be the interior of the union of the closures of triangles of {-ri} which do not 
have vertices on aQ. The spaces Mk fpr k < J, to be used in the multigrid 
algorithm, are defined by 

(6.1) Mk = {0 E Mk I supp(o) E Qk}- 

Because of the convexity of Q, it is easy to see that Qk C i for k = 1, ... , J. 
Consequently, functions in Mk extended by zero are in Ho' (Qi). Thus, we shall 
consider the spaces Mk and Mk as being contained in Ho (Q) . Moreover, the 
triangles of {rk } in Qk can be written as the union of triangles in {ri }. 
This implies that the multigrid spaces defined by (6.1) are nested, i.e., 

M1 cM2c c.cMjcHo(Q). 

The argument of Lemma 4.2 goes through without change for this application. 
To apply the theory of ?4, we need only prove (3.1). From the proof of Lemma 
4.1, it clearly suffices to prove the inequalities (4.6) and (4.7) for this application. 
To this end, we introduce. the following lemma. 

Lemma 6.1. Let On denote the strip {x E ? 1 dist(x, oQ) < i} and 0 < s < 

1/2. Then for all v E Hl +s (Q), 

(6.2) IvI 11, < cis llv 11 +S 

In addition, for v E Ho' (Q), 

(6.3) IIVII7 < C71 IIV III 
Proof. Note that if con is a reference square of side length il, then 

IIWII2'7 < 12/2 IVW12 dx 
@17 
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holds for all functions w vanishing on one edge of a!1. Inequality (6.3) then 
easily follows by the use of local maps. A relatively straightforward interpolation 
argument (see Chapter 1, Section 1 5 of [ 19]) using the real method [ 19] between 
(6.3) and the trivial inequality Iw IIwI < w II gives that (for s $& 1/2 ) 

(6.4) IIwI1wj < c(s)1s llwlls for all w E Ho(Q). 
By Corollary 1.4.4.5 of [17], Hos(Q) = HS(Q) for s < 1/2. Let v E Hl+s(Q). 
Applying (6.4) to v and the first derivatives of v implies (6.2). This completes 
the proof of the lemma. 5 

We next prove (4.7). Note that by Lemma 3.1, we need only prove (4.7) 
for A(., *) corresponding to the Laplacian. Let a E (0, 1/2) be such that (4.3) 
holds. Based on the standard finite element duality argument (cf., [1, 14]), (4.7) 
will follow if we show that for all w E HI+a(Q) n Ho (LI), 

(6.5) 1(I-Pk_l)w III < CAak / IIWI +a 
Fix w in Hl+a(Q) n Ho' (Q). Let X denote the function in Mk-l which in- 
terpolates w on the nodes of LkO and 7 be the function in MK-1 which 
interpolates w at the nodes of ik- 1I. From the definition of Pk- 1 , we imme- 
diately have that 

A((I-Pk-l)w, (I-Pk_l)w) < A(w-X, w-X) 
(6.6) < c(IIW _ yI2' no+ ly7- X112i + 2iWli ,\Qo 

Applying the Bramble-Hilbert Lemma and well-known techniques, we conclude 
that 

(6.7) IIw _ 7112 ,kI < ch 2a IIWIa12. 

Note that 7 X- x is a mesh function (in Mk-1) which vanishes on all nodes 
except those on a0-l . Consequently, 

(6.8) X 
x11 

2 
no < C cZ(X,)2, 

X, 

where the sum is taken over the nodes xi of Mk I on aQk. Let Qk-1 = 

lk_ I k_ *. Then (6.7) and (6.8) imply that 

(6.9) IIZ-xI,~ no ? I7I _ c(IIw -ZI Y +III1, (6.9) || |t k -I I |/t, nk_,- (I l |I, ik-, I l i,k- I 

< c(hkc IIWIII+a + IIWIII4n\no ). 

Applying Lemma 6.1 gives 

(6. 10) ll 12 a\o < ch 2c 
IIW 1112+X 

Combining (6.6), (6.7), (6.9) and (6.10) proves (6.5), i.e., (4.7) holds for this 
application. 

We now prove (4.6). By the triangle inequality, the first inequality will follow 
if we can show that for all v E MJ, 

(6.11) | |(I-Qk)vI2? cA'A(v,v) fork= 1, ...,J-. 
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Let Qk denote the L2(Qk) orthogonal projector onto the space Mk . By using 
the interpolant, it is easy to prove that 

1( - Qk)V 11k < chl+a ||V|12+ 

for all v E Ho (Q)nHl+a(Q). Interpolating (using the real method [19]) between 
this inequality and the trivial inequality 

11(I- Qk)VIL k ? Ii II 

gives 

11( I-1Qk)V12-k < C)k ' liv 112 for all v EHo () 

Fix v E Ho (Q) and let ok denote the function in Mk which interpolates Qkv 
at the nodes in QO . Then, Lemma 6.1 and the triangle inequality give 

II (I - Q V12 _IV kI112 Il(I-Qk)vII ?li1 ||V-o 

< c(||(I - Qk)VIWQ + IIQkV OkIIDO + I 

kk < C(A 1l IV 12 1 + | 12o | o + i-1 IIIV 112 ) 

The difference QkV - ok is a mesh function which vanishes on the nodes of 
QO and hence k 

IQv-kIIj2o ? ch2 ZQ (x)2 ? 
1C1V2 lQV - okl QO<Ck k (QkV (Xi))2 < C|| QkV || k\2ok 

Xi 

C((QkV - VIInk\io + II IQk\n?) k c)k livIII. 

The sum on xi above is over the nodes on 0 Q0. Combining the above in- 
equalities proves (6.1 1). 

We finally prove the second inequality of (4.6). Fix v E Ho' (Q) and let ok 
denote the L2(K2k) orthogonal projection of v onto the space of discontinuous 
piecewise linear functions with respect to the triangulation {1} }. Note that 

liv &6I~ ?1 <CA-, IIVI12,~ |l k - o |k Ck 1 fi2k 

(6.12) 112 |l t 
< C IIVl 112 ' 

IkCQk~~~~ 

Consequently, by (6.1 1) and (6.12), 

116k - QkV I, < cAk)IIk - QkvIIQk < cA(v, v). 
Ti C Qk 

The second inequality of (4.6) follows by the triangle inequality and the second 
inequality of (6.12). 

Since (4.6) and (4.7) are valid, the argument proving Lemma 4.1 implies that 
(3.1) holds for this application. Applying the theory of ?3 gives the following 
theorems. 

Theorem 6.1. Let Ba be defined by (2.4) with A(, *), (, *), and {Mk} as 
described in this section. Set Mk = Mk for k = 2, ..., J. Assume that Rk 
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(which is symmetric) satisfies (3.7). Then the condition number K(BaAj) is 
bounded by a constant which is independent of J. 

Theorem 6.2. Let Bm be defined by Algorithm 2.1 with A(-, ), (, *), and 
{Mk} as described in this section. Set Mk = Mk for k = 2, ..., J. Assume 
that Rk satisfies (C.1)-(C.3). Then 

(6.13) O<A((I-BJAJ)v,v)<(1-1/CM)A(v,v) forallvEMJ. 

The constant CM in (6.13) is independent of J. 
Remark 6.1. Clearly, the techniques of ??5 and 6 could be combined to yield 
similar results for problems with curved boundaries and nonuniform mesh re- 
finements. 
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